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Abstract. This paper proposes a novel framework for empirically
assessing the effect of network characteristics on the performance of pre-
trained link prediction models. In link prediction, the task is to predict
missing or future links in a given network dataset. We focus on the
pretrained setting, in which such a predictive model is trained on one
dataset, and employed on another dataset. The framework allows one
to overcome a number of nontrivial challenges in adequately testing the
performance of such a pretrained model in a proper cross-validated set-
ting. Experiments are performed on a corpus of 49 structurally diverse
real-world complex network datasets from various domains with up to
hundreds of thousands of nodes and edges. Overall results indicate that
the extent to which a network is clustered is strongly related to whether
this network is a suitable candidate to create a pretrained model on.
Moreover, we systematically assessed the relationship between topolog-
ical similarity and performance difference of pretrained models and a
model trained on the same data. We find that similar network pairs in
terms of clustering coefficient, and to a lesser extent degree assortativity
and gini coefficient, yield minimal performance difference. The findings
presented in this work pave the way for automated model selection based
on topological similarity of the networks, as well as larger-scale deploy-
ment of pretrained link prediction models for transfer learning.
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1 Introduction

In recent years, researchers have studied complex networks to understand and
analyze the intricate relationships that underlie various real-world systems. Com-
plex networks, characterized by their non-trivial topological structures, have
applications in diverse fields such as the social sciences, biology, transportation,
and information technology [6]. Understanding the dynamics of these different
types of networks and predicting the formation of new or missing connections,
also known as “link prediction”, is a well-known and well-studied problem in the
field [17]. Link prediction aims to uncover hidden or potential interactions in a
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network; for example, to predict who might connect to whom in a social network
or which proteins are likely to interact in a biological network. Furthermore,
link prediction is also used in various other applications and tasks, including
recommender systems, anomaly detection, privacy control, network routing, and
understanding the underlying mechanisms that govern network evolution [9–
11,14].

In literature, different types of methods for link prediction have been pro-
posed. Initial methods focused on node pair similarities, such as the Jaccard coef-
ficient, Adamic-Adar index, and resource-allocation index [1,17]. Node pair simi-
larity relies on the notion that if a given pair of nodes has a similarity score higher
than some threshold, then this pair is more likely to be connected [11]. Later,
researchers proposed other types of methods, including (i) maximum likelihood-
based methods that work on maximizing the likelihood of the observed structure
so that any missing link can be calculated using the identified rules and param-
eter [22], (ii) probabilistic models based methods that focus on modeling the
underlying network structure and then use the learned model to predict the miss-
ing links [24], (iii) machine learning-based methods that train a machine learning
model based on node pair features for existing and non-existing links [2,5], and
(iv) network embedding-based methods that create a low dimensional represen-
tation of the network using word2vec models or matrix-factorization, and then
train a machine learning model using these vector representation of nodes to
predict missing links [8,16,23]. In literature, it has been shown that the third
category, machine learning based methods, outperforms other types of methods
and has lately become the focus of link prediction research [12]. An additional
advantage is that the use of topological features of the node pairs ensures the
interpretability and explainability of resulting models through the analysis of
feature importance. However, one limitation of these methods is that a link pre-
diction model must be trained for each new network dataset.

To solve this problem, people have used transfer learning, i.e., a machine
learning technique where a model developed for a particular task is reused or
adapted as the starting point for a model on a second task [20]. Instead of training
a new model from scratch, transfer learning leverages the knowledge gained from
solving one problem and applies it to a different but related problem. By using a
pretrained model as a starting point, one can save time and resources compared
to training a new model from the ground up. In this work, we investigate the
feasibility of transfer learning for link prediction in real-world complex networks.

In the remainder of this work, we analyze the characteristics and topology
of 49 networks to understand how they affect the ability to train and predict
links across networks. Specifically, we first propose a framework to perform cross-
validation across multiple datasets, to efficiently test and compare the transfer
learning performance of pretrained models for link prediction. Working towards
automated pretrained model selection, we subsequently investigate what kind of
topological network properties are important for selecting a well-performing pre-
trained model. Finally, we analyze what topological network similarities between
training and testing networks, yield good transfer learning performance. In doing
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so, we aim to understand to what extent transfer learning can be applied to pre-
dict unseen links in real-world networks by employing pretrained models.

The structure of the remainder of this paper is as follows. In Sect. 2, we
discuss the approach followed to train our link prediction model, as well as the
framework to test transfer learning. Then, Sect. 3 describes the data, evaluation
criteria used, and the experimental setup developed, as well as the experimental
results. Finally, we draw conclusions and propose future directions of research
in Sect. 4.

2 Methodology

In this section, we first discuss the network features used to train predictive
models for link prediction. Then, we give an overview of machine learning algo-
rithms used to predict missing links and explain how we split the datasets for
training and testing.

2.1 Features

Working towards a machine learning model that takes node pairs as input, and
outputs whether this node pair is likely to be connected in the future, features
that describe these node pairs are required.

In this work, we employ features commonly used in link prediction models,
focusing on the work presented by Bors [3], to design a good link prediction
model and test transfer learning. The chosen features balance simplicity, speed,
and performance. We note that this study aims not to design the best link
prediction model with the most comprehensive set of features, but instead aims
to assess the feasibility of transfer learning in link prediction.

The selected set of features used throughout our experiments are as follows:
(i) total neighbors, i.e., the union of all neighbors of the source and target nodes;
(ii) common neighbors, i.e., the number of nodes connected to both the source
and target nodes; (iii) Jaccard Coefficient [17], i.e., the ratio between the common
and total neighbors; (iv) Adamic-Adar [1], which used to compute the closeness
of nodes based on their shared neighbors; (v) preferential attachment [17,19],
i.e., the multiplication of the number of neighbors of the source and target nodes;
(vi) degree of the source node (vii) degree of target nodes, (viii) ratio of degrees
of source and target node, (ix) triangle count for the source node, and (x) triangle
count for the target nodes, i.e., denoting the number of triangles they are involved
in.

2.2 Training and Testing Set Generation

To generate a training dataset from the network, the node pairs with existing
links are considered as positive cases, and node pairs with distance two are used
as negative cases. We consider only node pairs at a distance of at most two, as
links are more likely to be formed between already close nodes. This is reflected
in the chosen features, many of which are not applicable to nodes at a distance
larger than two. Moreover, it assists in reducing the class imbalance.
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2.3 Stacked Classifier

In this work, we use a supervised machine learning model for link prediction
classification. Based on the findings by Ghasemian et al. [7], we set up a stacked
classifier using Scikit-Learn [21], in which we use the most commonly used clas-
sifier models in the literature [7,15,18,23]: a random forest classifier, logistic
regression, naive-bayes, and quadratic discriminant analysis models. Together,
these models serve as base estimators. We then use Logistic Regression as meta-
model to combine (“stack”) these predictions to make a final prediction.

2.4 Cross-Validation Framework

Here we discuss the proposed framework for adequate cross-validation training.
We split the datasets into training and testing subsets to evaluate the perfor-
mance of the prediction model. The datasets are split using k-fold, and in this
work, we set k = 4, resulting in a random 75–25% split, to avoid bias in the sam-
ple. Additionally, due to the sparsity of networks, we down-sample the majority
class of the training dataset to account for class imbalance. We perform cross-
validation training as shown in Fig. 1 to validate a model’s results on different
data portions. Essentially, we train models for each fold per dataset and then
validate them on each split of the datasets. Note that in Fig. 1, we only train and
validate on the same split when testing on the same network. This is because,
within the same split, the data is disjoint, so we do not have the same observa-
tions in the train and validation sets. Otherwise, we would encounter the same
data in both the training and validation sets, which is not ideal for a machine
learning model since it adds bias to the model by predicting previously seen
data. Thus, we removed those cases from our testing set.

3 Experiments

This section covers the experimental setup and results. First, in Sect. 3.1, we
discuss the datasets and metrics used. Then, in Sect. 3.2, we determine the overall
feasibility of using transfer learning for link prediction by studying the AUC
(loss) matrix and distributions. Next, in Sect. 3.3, we discuss what the most
important topological features are that affect the performance of a pretrained
model. Finally, in Sect. 3.4, we determine which structural network similarities
yield good transfer learning performance.

3.1 Experimental Setup

Datasets. In order to test the capabilities of transfer learning, we analyze 49
network datasets from the KONECT Project [13]. The networks were chosen
such that they cover a variety of topological properties, sizes, and categories.
The datasets are presented in Table 1, along with their respective number of
nodes and edges. All networks are interpreted as undirected and unweighted.
Additionally, we only consider the largest connected component of each network.
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Fig. 1. Cross-validation training assignments. For each split, we generate a training set
with 75% of the data and a validation set with the remaining 25%. (Letters indicate
the dataset, numbers indicate the split.)

Metrics. Similarly to previous works [4,7], we measure the performance of the
classifier using the Area Under the Receiver Operating Characteristic Curve
(AUC). Additionally, we define AUC loss, which we use to measure the loss in
accuracy resulting from applying transfer learning between two different net-
works. We calculate loss Li,j as follows:

Li,j = AUCi,i − AUCi,j

Here, Li,j is the loss of training a model with network i and validating on network
j and AUCi,j is the performance score of training a model with network i and
validating on network j.

For all pairs of network datasets considered, the resulting AUC score of using
a model trained on network i to predict missing links on network j, can be
presented in a matrix as shown in Fig. 1. In other words, for each pair of networks,
we train on each fold of network i and test each trained model on each fold of
network j (provided i �= j), and then aggregate over all combinations of folds by
averaging the AUC scores.

3.2 Feasibility of Transfer Learning in Link Prediction

To test whether transfer learning is feasible for link prediction, we assess if it is
possible to pretrain a model on one network and test it on another with minimal
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Table 1. Datasets sourced from [13], along with the number of nodes and edges.

dolphins (62/159) residence (217/2,672) copperfield (112/425)

cora (23,166/91,500) karate (34/78) proteins (1,706/6,207)

dblp (12,590/49,759) adolescent (2,539/12,969) reactome (6,327/147,547)

hepph (34,546/421,578) blogs (1,224/19,025) yeast (1,870/2,277)

hepth (27,770/352,807) foldoc (13,356/125,207) asoif (796/32,629)

astroph (18,771/198,050) airtraffic (1,226/2,615) sistercities (14,274/20,573)

astrophysics (16,046/121,251) newyork (264,346/730,100) lesmis (77/254)

erdos (6,927/11,850) openflights (3,425/67,633) pgp (10,680/24,316)

networkscience (1,461/2,742) contiguous (49/107) wikipedia (7,118/103,675)

digg (30,398/87,627) euroroad (1,174/1,417) hamsters (2,426/16,631)

dnc (2,029/39,264) chess (7,301/65,053) twitter (23,370/33,101)

facebook (46,952/876,993) football (115/613) filmtrust (874/1,853)

slashdot (51,083/140,778) congress (219/764) florida dry (128/2,137)

uc irvine (1,899/59,835) bible (1,773/16,401) florida wet (128/2,106)

caida (26,475/53,381) eat (23,132/511,764) littlerocklake (183/2,494)

gnutella25 (22,687/54,705) wordnet (146,005/656,999) chesapeake (39/170)

routeviews (6,474/13,895)

AUC loss. Therefore, we applied the cross-validation training procedure detailed
in Sect. 2.4 to all 49 datasets. The distribution of the resulting AUC scores
and AUC loss are shown in Fig. 2. Since we use the same model and the same
features for all networks for link prediction, the AUC scores are, as expected,
not particularly high, with an average AUC score of 0.71. More importantly,
Fig. 2b shows that AUC loss is very low for many combinations of training and
testing networks. However, in many use cases, the average AUC loss of 0.14 can
still be considered too significant. This signals the important conclusion that
one can not simply choose a random network to pretrain and apply it to any
new network. Instead, an appropriate network should be selected to minimize
the AUC loss.

To investigate which (types of) networks make transfer learning in link pre-
diction more feasible, Fig. 3 shows the matrix of AUC loss for all pairs of training
and testing networks for all 49 networks under consideration. Rows in the matrix
depict the training performance of a single network, while columns represent the
ease of prediction for a single network. In Fig. 3, we can see that networks from
citation and co-authorship categories (i.e., cora, dblp, hpph, hepth, astroph
and astrophysics), as well as miscellaneous (asoif, sistercities, lesmis),
show favourable training performance with minimal AUC loss, suggesting they
are good baseline for pretrained models. Similarly, computer networks (caida,
gnutella25, and routeviews), infrastructure networks (airtraffic, newyork,
euroroad) and metabolic networks (proteins, yeast) display good validation
performance, meaning they are usually easy to predict regardless of the choice
of pretrained model. On the other hand, the bible network is the worst perform-
ing training network, with several very large AUC losses. Furthermore, some
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(a) AUC scores distribution. (b) AUC losses distribution.

Fig. 2. Distributions of the AUC scores and AUC loss across all networks. Alongside
the mean and median the quartiles are depicted with light grey lines. The blue line
approximates the trend.

human contact (residence, karate), human social (adolescent), lexical net-
works (bible, eat, wordnet) and trophic networks, i.e., relating to biological
interactions of species (commonly food chains), (florida dry, florida wet,
littlerocklake, chesapeake) show substandard validation performance, with
few to no pretrained models providing low AUC loss. As such, there are some
networks that often do well for training (pretrained) models and those for whom
many pretrained models work well, but there are also some for which no pre-
trained model appears to perform well. Thus, although transfer learning for
link prediction is feasible for most networks given the right choice of pretrained
model, it is not effective in all cases, i.e., there is no one-size-fits-all kind of
solution.

3.3 Topological Feature Importance for Pretraining Models

Next, we set to understand how a network’s topological features might affect a
model’s learning performance. For this, we train decision tree and random forest
algorithms by using the topological features of the networks to fit their average
AUC score as pretrained models aggregated over all testing networks. The top
splits, i.e., the top discriminating decisions, of the resulting trees are visualized
in Fig. 4. By studying the top discriminating decisions of these trees, we can
understand which are the most important topological features for good transfer
learning performance and how these features affect the performance.

The decision tree depicted in Fig. 4a suggests that a high normalized num-
ber of triangles (#triangles/edges) results in, on average, higher AUC scores.
Furthermore, for pretrained models from networks with a high maximum degree
and few triangles (per link), we observe that the transitivity is a great indicator
of either high or low resultant AUC scores, whereas, for lower maximum degree
models and few triangles (per link), the average degree can be a good indicator.

The decision tree obtained from the random forest algorithm in Fig. 4b sug-
gests that very low transitivity or relatively high transitivity with high mean
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Fig. 3. AUC loss matrix for all 49 datasets.

distance and clustering coefficients tend to result in higher AUC scores. On the
contrary, low-to-middle transitivity with higher clustering coefficients and high
transitivity with small mean distances or small clustering coefficients result in
low AUC scores. As such, only high transitivity or clustering coefficient are not
universally good or bad for the transfer learning link prediction performance of
a pretrained model. However, note that clustering coefficient and transitivity
are usually correlated, so a network with a high clustering coefficient will likely
not have low transitivity. Interestingly, our previous observation from Fig. 4b
indicates that high AUC scores are obtained when these topological features are
indeed correlated for a network, and low AUC scores are obtained when they
are not.
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(a) Decision tree.

(b) Random forest.

Fig. 4. Tree-based topological feature importance. Darker coloured nodes/leafs indicate
higher average AUC scores achieved by the pretrained models of included networks,
whereas lighter coloured leafs indicate lower average AUC scores. The average AUC
scores of the node/leaf are indicated by ‘value’. For each parent node the left child
includes the pretrained models from networks that adhere to the condition specified by
the parent node and the right child includes those that do not. For example, in figure
(a) the left child of the root node includes all pretrained models from networks with
a maximum degree ≤ 505.5 while the right child includes all those with a maximum
degree > 505.5.

In short, we find that some of the most important topological features influ-
encing the performance of pretrained models are the number of triangles (per
link), the transitivity, and the clustering coefficient. Notably, the level of corre-
lation between these features can be especially indicative of the resulting high
or low AUC scores of a pretrained model.



A Framework for Empirically Evaluating Pretrained Link Prediction Models 159

3.4 Influence of Network Dissimilarity on Transfer Learning

Finally, we examine what structural network similarities between a training and
a testing network lead to good transfer learning performance. We do so by com-
paring the AUC loss (as defined in Sect. 3.1) to how dissimilar the topological
properties are between two networks. This allows us to understand if there is a
relationship between their similarity and the performance of the model. Figure 5
illustrates the relation of loss in performance when predicting missing links in
one network using a model trained on another, compared to the topological
dissimilarities of both networks. It is clear that there is a trend in almost all
topological features (except for maximum degree), and if two networks are more
different, there is more loss in the performance. Specifically, we observe that if
two networks are more similar in terms of clustering coefficient, it leads to the
lowest AUC loss, while the most dissimilar networks for this feature have the
second highest AUC loss. Furthermore, when it concerns degree assortativity,
gini coefficient, and transitivity, we note that highly similar networks also show
reasonably low AUC losses. Overall, our results indicate that considering the
similarity in terms of clustering coefficient, and to a lesser extent in terms of
degree assortativity, gini coefficient, and transitivity is especially important in
choosing a pretrained model for link prediction.

Fig. 5. AUC loss vs. network dissimilarity.

4 Conclusion

In this work, we studied the feasibility of using pretrained link prediction mod-
els in complex networks. Moreover, we studied the network characteristics that
impact model training, and how these can be used for selecting a well-performing
pretrained model. We conducted experimental analysis on a large corpus of struc-
turally diverse networks, including co-authorship, citation friendship, human
interaction, biological, and transportation networks. Through our experiments,
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we observed that transfer learning for link prediction is a feasible way to move
forward, and some network categories perform better as sources for training and
others to predict missing links on. Furthermore, we found that network features
based on local connectivity, such as clustering coefficient, number of triangles,
or transitivity, are important indicators when picking a network for training a
predictive model. Specifically, we found that when two networks show very dis-
similar topologies in terms of clustering coefficient, but also in terms of degree
assortativity, gini coefficient, and transitivity, it is likely that the performance
of transfer learning is hindered.

This work demonstrates the feasibility of using pretrained models in link pre-
diction. Future work could focus on designing better transfer learning methods
to achieve higher accuracy using topological properties of an unseen network and
the network used for pre-training. Additionally, this work opens an avenue to
use transfer learning for complex network problems, such as node classification,
role identification, and influence maximization.
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